نگاشت‌های نگهدارنده جفت‌های عملگری باناخ روی جبرهای عملگری

نویسنده

  • Roja Hosseinzadeh Department of Mathematics, Faculty of Mathematical Sciences, University of Mazandaran, P. O. Box 47416-1468, Babolsar, Iran.
چکیده مقاله:

فرض کنید ‎$mathcal{B(X)}$‎ جبر شامل تمام عملگرهای خطی کران‌دار روی فضای باناخ ‎$mathcal{X}$‎ و ‎$phi:mathcal{B(X)}longrightarrow mathcal{B(X)}$‎ یک نگاشت جمعی دوسویی باشد که جفت عملگری باناخ را از دو طرف حفظ می کند. در این مقاله، نشان می دهیم که به ازای هر ‎$A in mathcal{B(X)}$‎ و ‎$x in mathcal{X}$‎، اسکالرهای ‎$alpha‎ , ‎beta in mathbb{C}$‎ وجود دارند به طوری‌که ‎$$phi(A)x=alpha x+beta Ax.$$‎

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

روابط اندازه پذیر و معادلات عملگری تصادفی در فضاهای باناخ

در این مقاله، نگاشت های چندمقداری یا روابط اندازه پذیر را معرفی و ارتباط بین تعاریف مختلف اندازه پذیری آنها را مطالعه می کنیم. موضوع نگاشت های چندمقداری اندازه پذیر در نظریه بازیها و نظریه کنترل کاربرد دارد. مطالب بیان شده را برای بررسی وجود جواب معادلات عملگری تصادفی غیرخطی در فضاهای باناخ به کار می بریم.

متن کامل

روابط اندازه پذیر و معادلات عملگری تصادفی در فضاهای باناخ

در این مقاله، نگاشت های چندمقداری یا روابط اندازه پذیر را معرفی و ارتباط بین تعاریف مختلف اندازه پذیری آنها را مطالعه می کنیم. موضوع نگاشت های چندمقداری اندازه پذیر در نظریه بازیها و نظریه کنترل کاربرد دارد. مطالب بیان شده را برای بررسی وجود جواب معادلات عملگری تصادفی غیرخطی در فضاهای باناخ به کار می بریم.

متن کامل

توابع عملگری و انواع نگاشتهای مثبت

در این رساله با بررسی خواص توابع صعودی عملگری و محدب عملگری ضمن به دست آوردن خواصی جدید از این توابع، به بیان نامساوی هایی عملگری می پردازیم. به طور خاص، نشان خواهیم داد که هر تابع غیر ثابت صعودی عملگری، اکیدا صعودی عملگری است. پس از آن نامساوی مشهور لونر هایز را بهبود بخشیده و صورت جدیدی برای آن ارائه می دهیم. در ادامه با ایجاد ارتباط بین مثبت بودن حاصلضرب متقارن دو عملگر مثبت و زیر جمعی بو...

نگاشتهای حافظ حاصلضرب صفر روی جبرهای باناخ

یک نگاشت خطی t از یک جبر باناخ َ به جبر باناخ إ حافظ حاصلضرب صفر است هرگاه برای هر a,b در a بافرض ab=0 داشته باشیم t(a)t(b)=0 . هدف این پایان نامه بررسی این پرسش است که آیا هر نگاشت پوشا و پیوسته حافظ حاصلضرب صفر یک همریختی وزن دار است؟ نشان میدهیم که پاسخ این سئوال در مورد کلاس بزرگی از جبرهای باناخ شامل جبرهای گروهی مثبت است. روش ما شامل در نظر گرفتن یک نگاشت دو خطی ? از a×a به توی x است(برا...

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


عنوان ژورنال

دوره 6  شماره 2

صفحات  117- 123

تاریخ انتشار 2019-12-01

با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023